
fdb-rs FoundationDB support
for Tokio/Rust
https://fdb-rs.github.io

Rajiv Ranganath

https://fdb-rs.github.io

About Me

● Currently working on an application backend for India market using FoundationDB

● Interested in Functional Programming, Databases, Distributed Systems, Operating Systems,

Blockchain

● Not active on social media

● Reachable at firstname.lastname@{gmail,atihita}.com, on GitHub and FoundationDB forums

Why FoundationDB?

● Accidental (Arbitrary) Complexity vs. Essential Complexity

● Accidental complexity refers to problems imposed by the particular tools and processes you have

chosen

● Essential complexity refers to problems inherent in the domain that you are working on

● With FoundationDB, you still have to deal with complexity but to a large extent it is essential

complexity

● There is very little accidental complexity when using FoundationDB

Why FoundationDB?

● Strict Serializable Transaction Model

● Managing state

F1: A Distributed SQL Database That Scales VLDB (2013)

The AdWords product ecosystem requires a data store that supports ACID transactions. We store

financial data and have hard requirements on data integrity and consistency. We also have a lot of

experience with eventual consistency systems at Google.

In all such systems, we find developers spend a significant fraction of their time building extremely

complex and error-prone mechanisms to cope with eventual consistency and handle data that may be

out of date. We think this is an unacceptable burden to place on developers and that consistency

problems should be solved at the database level.

Full transactional consistency is one of the most important properties of F1.

Strict Serializability reduces Accidental Complexity

● Begin and commit transaction T1, which writes to item x

● Later you begin and commit transaction T2, which reads from x

● Database providing strict serializability will place T1 before T2 in the serial ordering and T2 will

read T1’s write

● Database will not reorder the transactions, and place T2 before T1

● Strict serializability matches the programmer’s intuition of how transactions work

Strictly serializable databases are very rare!

● Proven, horizontally scalable, distributed, fault tolerant, strictly serializable databases are very

rare!

● Two well known ones are

○ FoundationDB (open source)

○ Spanner (Google proprietary)

● Additional resources

○ Peter Balis - Linearizability versus Serializability

○ Daniel J. Abadi - Demystifying Database Systems, Part 2: Correctness Anomalies Under Serializable Isolation

○ Jepsen - Strict Serializability

http://www.bailis.org/blog/linearizability-versus-serializability/
https://fauna.com/blog/demystifying-database-systems-correctness-anomalies-under-serializable-isolation
https://jepsen.io/consistency/models/strict-serializable

Why FoundationDB?

● Strictly Serializable Transaction Model

● Managing state

Managing state

AZ 1 AZ 2 AZ 3

Load Balancer

Frontend Fleet

Application Layer Fleet

FoundationDB Fleet

Stateless / Functional code

State Storage

fdb-rs Project

● To develop FoundationDB Rust crates that is designed to work well with Tokio ecosystem crates

● Focused on getting interoperability and ergonomics with the Tokio ecosystem

○ Tokio Async Runtime

○ Bytes

○ Tracing/Metrics

○ Hyper

○ Tower

○ Axum

○ Smithy (AWS)

● foundationdb-rs project maintains runtime agnostic crate, if that is something you prefer!

fdb Crate

● Provides idiomatic Rust/Tokio bindings for

communicating with FoundationDB cluster

● APIs are inspired by Java bindings

● Uses unsafe code to communicate with C

library

fdb-rl crate (under development)

fdb crate

libfdb_c.so

fdb Crate - Types and Traits

● FdbError, FdbResult<T>

● Key, Value

● FdbFuture<T>, FdbStreamKeyValue

● ReadTransaction, Transaction

● FdbReadTransaction, FdbTransaction

● FdbDatabase

fdb Crate - Transaction retry loop

 pub async fn run<T, F, Fut>(&self, mut f: F) -> FdbResult<T>
 where
 F: FnMut(FdbTransaction) -> Fut,
 Fut: Future<Output = FdbResult<T>>;

 pub async fn read<T, F, Fut>(&self, mut f: F) -> FdbResult<T>
 where
 F: FnMut(FdbReadTransaction) -> Fut,
 Fut: Future<Output = FdbResult<T>>,

fdb Crate - Transaction retry loop

fdb_database

 .run(|tr| async move {

 // Retryable idempotent transaction logic

 })

 .await?;

Demo

Additional Resources

● https://github.com/fdb-rs

● https://fdb-rs.github.io/docs/getting-started/introduction/

● https://forums.foundationdb.org/

● Bug reports, feedback and contributions are very welcome!

https://github.com/fdb-rs
https://fdb-rs.github.io/docs/getting-started/introduction/
https://forums.foundationdb.org/

